10. a . bee/ha .e4
a a c. / f a a .he
ca ea e4 a 4 . ce e4.
/ ha . he f 4 . he ca b
hea he ea e ca .

e a ea le fea le ea le forme e ea le forme ea le forme ea le forme ea le ea le

.e ec, 4 a e, f ca, a be e/ha .e4, .he .e ca, e, e, ca e, e, a., a e, ..., f .he ., e(e, e, ca, ..., a e, ..., he, a).

ea ca \_ all elca ea o ace he ho, e/ha elca \_ he ea o a ll ace he ll he ca . ea ca acc el . he ca . ea ca acc el . he ca . ea ca ea el b ca \_ a he e ll fin \_ b ca \_ . he ca \_ he ca \_ . he ca \_ . he ea o e ea el ca e a b ef e \_ \_ . he ca \_ . he ea \_ . he e \_ e ca \_ o .

. , he can o b ach he each can he ach he can he can

- . We  $M_{++}$  . We call G . We G .
- , e, ., e e/ ha ., . he ca e.
- 11. e, e, /, b / e b e, e, c, c, ea ca, e, ... The eete he ta a ereache 11 . The reache e...he 10-\_ 4/e he4 a e.c. e \_ e, ce \_ . e. !!e. e. he. e. he ca \_ / be , el/, e. ha. el/, ....
- 12. . Le . e . e . ea . f .

## Dial gal ge canne poce a 11 pol nd pele a al j de of 0-2,000 fee

1-pound cans (size: 301×408) 99 minutes  $\frac{1}{2}$ -pound cans (size: 307×200.25) 70 minutes  $( \ldots, , \ldots, 00 -4,000 ), \ldots, \ldots$ 4,00 -6,000 ,, ,,,, ..., ..., ..., ..., ..., 6,00 -,000 ,, ., ., 4 . . . . , , . . , . )

Weigh ed ga ge campe\_p\_oce x j h 10 po ndx eigh a al i de of 0-1,000 fee

1-pound cans (size: 301×408) 99 minutes ½-pound cans (size: 307×200.25) 70 minutes 

ach cape a de cheche e e e e e e e e e e e e e be / ec e 4e4 be f. - 4, o ea e hea. be leebac la la la le ce leebac le  $\mathbf{f}_{+}$  . Let  $\mathbf{e}_{-}$  .  $(\mathbf{0}_{+}$  . .  $\mathbf{e}_{-}$  ).

- $e_{i}$ ,  $e_{i}$ , e
- Ve ca e lea lee, f be. e e a e e a b . . . . he / e h e ca a e - Mac M/aa.(..ae 2., 3 ...e f..ee.ee .  $\mathfrak{A}$  a a ca  $\mathfrak{a}$  ,  $\mathfrak{e}^{\mathfrak{A}}$  /  $\mathfrak{b}$  ca a  $\mathfrak{A}$  4 . 0 .e. a a e ca e / . af al.)

ala a eca o, a / le le. le. ala. 

 $a \bowtie a e_1 e e \bowtie e_1 e_2 \dots e_n = 0$ .  $a \bowtie e_1 e e_2 e e_2 \dots e_n e_n = a_n e$ . chec f. .ea ... Me.heca e.f. .ea e ca e, he re rere a ra 4 4 a be afe re e4.

<u>/e bella e ca e ( e / b. alla a e),</u> /a.f., he, e, e, e, e, . . . . . a M., a M., hec, e, c . 4. . e., ee,f.e.e, 4/, b e. . 4 . he/e h. ea h- Mbereea en a n e a ce 

<u>.e</u> \_ \_ e\_e\_e\_e ca\_ e . he\_. e\_e\_e\_ a Mc. o c. o e Me. Meca o Ma Me a Mca ... be ee, . Wec. We / e' a a f • /a . Me e . e f. se, e . e e 4/...

- 1. The end of the state of the e ca ea a a f
- 1. Re , e ca f , ca , e / . ha a , e , e h . a4. . .  $ca^{\dagger}_{i-1-1}$   $e^{\prime}$  ,  $a^{\dagger}_{i}e^{\prime}$  ,  $c_{i-1-1}$   $\bullet$   $ac_{i-1}\bullet$  ,  $\uparrow$   $e_{i-1}$   $\uparrow$   $e_{i-1}$ a = 4/ e = a,  $ac = f \cdot e = 4$ .
- /. h. el e. ea a e h. Mbe ee a le e ca e le e .
- , he can or , e.e. he a e, e, a 4 ea ...
- 20. e ear, chec. / h \_ ca / e \_ ... - Mae , f Mee o a , f e a , a Mf e e e ca e a a e.e..

e e e a e 4 \_ b ca a e a a b e f , , , ce , ca , , , ora, e /.e , , or, ce , Mice a ≪are a a b e . Le / b a / / / af.el /ce.

```
-00022
                      • ee
    -00023
    • ee
     - , --- //*//-/
-0012
                      • ee
    -0012
     • ee
-0012
                      • ee
     -00222
                      • ee
     - , ,,,,--, - -.
-00223
       -----, a Ҹ
       ----
                      • ee
```

-0032 -----

10,1/10, 0, 10,1000, is 10 \$ 10 weep 11 you - en 100 store prosperson transporter of any appropriately are 

1- - 0- 11/, 0 - - - 11



\_b, helb .he \_, o, , f a.a arba. \_,\_oa, e /.e \_,\_ o, ,ce , c \_, oa, \_ /, h.he \_, .el .ae e a. e., f .,c .re. e \_, o . f a.a a \_ \_ \_ a \_ \_ \_ a \_ \_ \_, e \_, e \_ \_, e \_, o, el ca \_, a \_, ..., a l, ..., lo a l, ..., lo a l, ..., b, . e a l o \_, \_ a \_, \_ a \_, ..., a l, ..., lo a l, ..., lo a l, ..., b, ... e a l o \_, \_ a \_, ...

2024 faaaqeba

0 -0 / /11-24