Course Information:

Title: Lecture Time: Lab Time: Prerequisites:	EE 608 Power Electronics Design (3+3) MWF (11:45AM-12:45PM) in Duckering 202 M (2:15-5:15PM) in Duckering 202, Duckering 330, and Duckering 216 Graduate standing or permission of the instructor
Instructor: Office: Office Hours: Phone: E-mail:	Dr. Richard Wies, Associate Professor, ECE Dept. Duckering 213 W 2-3:30PM, TR 10:30AM-12PM or by phone/e-mail 474-7071 rwwiesjr@alaska.edu
Required Text:	Mohan, Undeland, and Robbins, PovEtectronics: Converters, Applications, and Design, ¹ d ed., Wiley, 2003.
References:	Daniel W. Hart, Power Electronics, McGraw-Hill, 2011.
	Other references provided as needed.
Course Description:	Analysis and design of power electronic conversion, control and drive systems with emphasis on smart grid application sopics will include the theory and application of thyristors, rectifier C-DC converters, inverters, resonant converters, AC and DC switches and regonds, power supplies, DC drives, and adjustable-speed drives. Includes deatory exercises using power electronic converter boards and a complete power electronics design project.
Course Goals:	Students will develop aunderstanding of power elleconic conversion, control and drive systems with emphasis on analysis and design concepts. The course will develop the building locks for power electronic devices including rectifiers and converters. Analysis will include the use of PSpice and the use of Fourier transforms for determining harmonic content. A major design experience will include a project to build an operational power electronic conversion device using knowledge and skills acquiredeiarlier course work that incorporates "multiple realistic constraints and engineering standards" The lid the s, an2con49-14.1257

EE 608 – Tentative Lecture/Lab Schedule – Spring 2012 All dates and topics are tentative. Exam dates are subject to change.

MONDAY (LECTURE) MONDAY (LAB)	WEDNESDAY	FRIDAY
-------------------------------	-----------	--------

MONDAY (LECTURE)	MONDAY (LAB)	WEDNESDAY	FRIDAY
Feb. 13 – Lecture #11 DC-DC Switch Mode Converters: Buck-Boost with CCM & DCM – Section 7.5	Feb. 13 – Lab Lab #2: DC-DC Converters: Buck, Boost, and Buck-Boost – Sections 7.1-7.5 – Lab #1 Report Due	Feb. 15 – Lecture #12 DC-DC Switch Mode Converters: Cùk – Section 7.6	Feb. 17 – Lecture #13 DC-DC Switch Mode Converters: Full-Bridge (4-quadrant); Bipolar and Unipolar Switching; Voltage Ripple – Section 7.7
Feb. 20 – Lecture #14 DC-DC Switch Mode Converters: Comparison using Switch Utilization Factor; Equivalent Circuits; Reversing Powe Flow – Section 7.8	Feb. 20 – Lab Snubber Circuits: Diodes, Transistors, & Thyristors – Sections 27.1-27.9 Lab #3: Switching Characteristics of MOSFETs & Diodes in DC-DC Converters – Lab #2 Report Due – Progress Report #2 Due: + IEEE Code of Ethics	Feb. 22 – Lecture #15 Switching DC Power Supplies: Intro; Overview – Sections 10.1-10.3 DC-DC Converters with Electrical Isolation: Isolation Transformer Excitation & PWM Control – Sections 10.4.1-10.4.1.4	Feb. 24 – Lecture #16 Switching DC Power Supplies: Flyback Converters – Section 10.4.2
Feb. 27 – Lecture #17 Switching DC Power Supplies: Forward Converters – Section 10.4.3	Feb. 27 – Lab Lab #4: DC-DC Converters: Flyback and Forward Converters – Sections 10.4.2-10.4.3 – Lab #3 Report Due	Feb. 29 – Lecture #18 Switching DC Power Supplies: Push-Pull, Half- Bridge, Full-Bridge, & Current Source – Sections 10.4.4-10.4.7	Mar. 2 – EXAM #1 Cps. 1-3, 5, 7, & 27 OPEN BOOK 2 Formulas Sheets
Mar. 5 – Lecture #19 Switching DC Power Supplies: HF Transformer Design (Core Selection and Design) – Sections 10.4.8, 30.6- 30.9	Mar. 5 – Lab Lab #5: Magnetic Component Design: HF Transformers & Inductors – Sections 10.4.8, 30.1- 30.10 – Lab #4 Report Due	Mar. 7 – Lecture #20 Switching DC Power Supplies: Control Systems (PWM) – Section 10.5	Mar. 9 – Lecture #21
	 – Lab #4 Report Due – Progress Report #3 Due: + Engineering Standards 		

Standards

MONDAY (LECTURE)	MONDAY (LAB)	WEDNESDAY	FRIDAY
Mar. 19 – Lecture #22 FET Gate & BJT Base Drive Circuits – Sections 28.1-28.7	Mar. 19 – Lab Oral Presentation II: Midterm Progress Report Presentations – Midterm Progress Report Due: Design, Schematic, Standards, Final Parts, Budget, Revised Timeline, IEEE Code of Ethics, Concerns	Mar. 21 – Lecture #23 Thermal Considerations for Semiconductor Devices: Heat Transfer and Heat Sink Selection – Sections 29.1-29.4	Mar. 23 – Lecture #24 Phase-Controlled Rectifiers: Thyristor Circuits – Sections 6.1-6.2
Mar. 26 – Lecture #24 Phase-Controlled Rectifiers: Ideal Single- Phase Converters – Section 6.3.1	Mar. 26 – Lab Lab #6: PWM Control & Driver Circuits in Switching DC Power Supplies: Design, Simulation, Construction, & Testing – Lab #5 Report Due – Progress Report #4 Due: + Engineering Constraints	Mar. 28 – Lecture #25 Phase-Controlled Rectifiers: Single-Phase Converters with Source Inductance – Section 6.3.2	Mar. 30 – Lecture #26 Phase-Controlled Rectifiers: Practical Single-Phase Converters and Inverter Mode of Operation – Sections 6.3.3-6.3.4

Apr. 2 – Lecture #27 Phase-Controlled

MONDAY (LECTURE)	MONDAY (LAB)	WEDNESDAY	FRIDAY
Apr. 16 – Lecture #33 Switch-Mode Inverters: Single-Phase Full-Bridge with Voltage Cancellation Switch Utilization; Voltage Output Ripple – Sections 8.3.2.4-8.3.2.6		Apr. 18 – Lecture #34 Switch-Mode Inverters: Push-Pull Inverters; Switch Utilization – Sections 8.3.3-8.3.4	Apr. 20 – EXAM #2 Cps. 6, 10, & 28-30 OPEN BOOK 2 Formulas Sheets

Apr. 23 – Lecture #35 Switch-Mode Inverters:

Three-Phase Inverters and